Search results

1 – 2 of 2
Article
Publication date: 26 April 2013

Yap Boon Kar, Noor Azrina Talik, Zaliman Sauli, Foong Chee Seng, Tan Chou Yong and Vithyacharan Retnasamy

This paper aims to discuss the effects of ionic contaminations on the die surface of high lead flip chip ball grid array (FCBGA) package. Ionic contaminations from the flux…

Abstract

Purpose

This paper aims to discuss the effects of ionic contaminations on the die surface of high lead flip chip ball grid array (FCBGA) package. Ionic contaminations from the flux residue, formed during the die attachment process, could affect the package long‐term performance.

Design/methodology/approach

Thus, the flux‐cleaning process was implemented and the cleanliness effect was evaluated. Cleaning experiments using a new water‐based solvent were carried out to investigate the flux‐cleaning efficiency. The test packages were then evaluated via ion chromatography (IC).

Findings

Ion chromatograms show that there are high levels of ionic elements detected prior to the cleaning process. After the cleaning process, the contamination levels reduced significantly.

Originality/value

The value of the work here is testing of the new environmental friendly water‐based MPC® cleaning efficiency. The reduction of ionic contamination is thus reported.

Details

Microelectronics International, vol. 30 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 18 January 2013

Yap Boon Kar, Noor Azrina Talik, Zaliman Sauli, Jean Siow Fei and Vithyacharan Retnasamy

The increased use recently of area‐array technology in electronic packaging has similarly increased the importance of predicting the thermal distribution of area‐array solder…

Abstract

Purpose

The increased use recently of area‐array technology in electronic packaging has similarly increased the importance of predicting the thermal distribution of area‐array solder interconnection. As the interconnection technology for flip chip package is getting finer and smaller, it is extremely difficult to obtain the accurate values of thermal stresses by direct experimental measurements. Different types of solder bumps used for interconnection would also influence the thermal distribution within the package. Because the solder balls are too small for direct measurement of their stresses, finite element method (FEM) was used for obtaining the stresses instead.

Design/methodology/approach

This paper will discuss the results of the thermal stress distribution using numerical method via ABAQUS software. The variation of the thermal stress distribution with the temperature gradient model was evaluated to study the effects of the different material thermal conductivity of solder bumps used. A detailed 2D finite element model was constructed to perform 2D plain strain elastoplastic analysis to predict areas of high stress.

Findings

It is found that thermal distribution of solder bumps starts to propagate from the top region to the bottom region of the solder balls. Other than that, thermal stress effect increases in parallel with the increasing of the temperature. The simulation results shows that leaded solder balls, SnPb have higher maximum thermal stress level compared to lead‐free SAC solder balls.

Originality/value

The paper describes combination of stress with thermal loading correlation on a flip chip model. The work also shows how the different thermal conductivity on solder balls influences the thermal induced stress on the flip chip package.

Details

Microelectronics International, vol. 30 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

1 – 2 of 2